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We find that the spin susceptibility of a two-dimensional electron system with valley degeneracy does not
grow critically at low densities, at variance with experimental results �A. Shashkin et al., Phys. Rev. Lett. 96,
036403 �2006��. We ascribe this apparent discrepancy to the weak disorder present in experimental samples.
Our prediction is obtained from accurate correlation energies computed with state-of-the-art diffusion Monte
Carlo simulations and fitted with an analytical expression which also provides a local spin density functional
for the system under investigation.
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I. INTRODUCTION

The spin properties of low-dimensional electron systems
in solid-state devices are of great interest in relation to spin-
tronics and quantum computing,1 both at the fundamental
level and for technological applications, with the long-
wavelength spin susceptibility of the two-dimensional elec-
tron gas �2DEG� playing an important role in the control of
nuclear spins.2 They are also believed to be intimately related
to the apparent metal-insulator transition �MIT� observed in
two dimensions.3–7 Indeed the spin susceptibility �s of the
2DEG, measured with various techniques,6 is consistently
found to grow with respect to its noninteracting Pauli value
�0 as the density is lowered and the MIT is approached.3–5

Recently, experimental evidence has been given for a critical
growth of �s in Si metal-oxide-semiconductor field-effect
transistors �MOSFETs� at a finite density3 coincident, within
experimental uncertainties, with the critical density for the
MIT.6,7 The qualitative question which we answer in this
paper is whether such a divergence is a property of the ide-
ally clean two-valley �2V� 2DEG, the simplest model of
electrons confined in a Si MOSFET,8 or is due to some other
factor. It should be stressed from the outset that the valley
degree of freedom has qualitative effects on the 2DEG prop-
erties, making the fully spin-polarized fluid never stable,9 at
variance with the one-valley �1V� 2DEG, and importantly
affects the MIT.10,11

Correlation plays a crucial role in the so-called EG, i.e.,
electrons with a 1 /r pair potential, moving in a neutralizing
charge background.12 Its importance grows both with lower-
ing the density and the space dimensionality, and tends to
quantitatively and often even qualitatively change the predic-
tions of simple schemes, such as the Hartree-Fock �HF� or
the random-phase approximation �RPA�.12 In the low-density
strongly correlated EG, which would be more properly called
an electron liquid, the energy balance determining the system
properties is played on a very minute scale and, to get mean-
ingful predictions, a great accuracy such as the one afforded
by quantum Monte Carlo �QMC� methods is necessary.12

QMC simulations have provided over the years the
method of choice for microscopic studies of the 2DEG,9,13–17

which has recently shown providing a rather accurate model

for electrons confined in solid-state devices.18 However, no
QMC prediction is available for �s in the 2V2DEG, and
other theoretical estimates, obtained either in RPA �Refs. 19
and 20� or with a classical mapping,21 do not appear
reliable.22 Here, to calculate �s we resort to extensive state-
of-the-art simulations of the 2V2DEG, using the diffusion
Monte Carlo �DMC� technique.23 We thus obtain the depen-
dence of the ground-state energy on both the density and the
spin polarization, also improving on Ref. 9, with the use of
twist-averaged boundary conditions �TABCs� �Ref. 24� and
trial wave functions including backflow �BF�.14

II. CORRELATION ENERGY OF THE 2V2DEG

In the 2V2DEG, electrons possess an additional discrete
degree of freedom, i.e., the valley flavor or index, which can
be conveniently described with a pseudospin. One may iden-
tify electrons with given spin and pseudospin indexes as be-
longing to a species or component. Accordingly, the para-
magnetic 2V2DEG is a four-component system while both
the fully spin-polarized 2V2DEG and the paramagnetic
1V2DEG have two components. For the sake of simplicity,
we restrict here to the symmetric case where the number of
electrons and the spin polarization are the same for both
valleys.25 Thus, at zero temperature, the state of the system is
fully specified by the coupling parameter rs=1 /��naB and
the spin polarization �= �n↑−n↓� /n, with n as the total elec-
tron density, aB as the Bohr radius, and n↑�↓� as the density of
up-spin �down-spin� electrons. Below, Rydberg units are
used throughout.

A. Simulation details

We have performed simulations with the fixed-phase �FP�
�Ref. 26� DMC method, which gives the lowest upper bound
to the ground-state energy consistent with the many-body
phase of a suitably chosen complex-valued trial function. For
real trial functions, FP DMC reduces to the standard fixed-
node �FN� approximation.23 A complex trial function allows
using TABCs,24 which reduce the size dependence of the
kinetic energy by one order of magnitude with respect to
periodic boundary conditions �PBC�. Furthermore, since
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TABCs do not require closed shells in k space, there are no
restrictions on the number of electrons per component so that
the polarization can be changed by flipping any number of
spins, with fixed total number of electrons.27 Our trial func-
tion is the product of Slater plane-wave �PW� determinants
�one per component� and a Jastrow factor.15 BF
correlations14 are included only for �=0 and �=1 but with
FN DMC and in PBC. Their contribution to the ground-state
energy is then added to the PW energies assuming a qua-
dratic dependence on polarization as in Refs. 16 and 17. The
ground-state energy per particle EN�rs ,��, calculated for sev-
eral values of rs, �, and the electron number N, is recorded in
Table III of Appendix A.

B. Analytic representation

Following Ref. 17, we determine the energy per particle
E�rs ,�� in the thermodynamic limit by fitting to the data
listed in Table III an analytic expression which embodies the
rs and � dependence as well as a Fermi-liquid-type size cor-
rection

EN�rs,�� = E�rs,�� + �TN�rs,�� + �� + �z�
2�

1

rsN

+ �� + �z�
2�

1

�rsN�3/2 . �1�

The fitting parameters � , �z , �, and �z take into account
potential-energy finite-size effects, while �TN�rs ,�� is the
difference of the noninteracting kinetic energy evaluated at
finite N with TABCs and in the thermodynamic limit. E�rs ,��
is customarily decomposed as sum of the noninteracting ki-
netic energy, �0�rs ,��= �1+�2� / �2rs

2�, the exchange energy,
ex�rs ,��=− 4

3�
1
rs

��1+��3/2+ �1−��3/2�, and the unknown corre-
lation energy ec�rs ,��, for which we adopt the same analyti-
cal representation of Ref. 17,

ec�rs,�� = �e−	rs − 1�ex
�6��rs,�� + �

i=0,2
�2i
i�rs� , �2�

where ex
�6��rs ,��=ex�rs ,��− �1+ 3

8�2+ 3
128�4�ex�rs ,0� and the

functions 
i�rs� are defined by


i�rs� = Ai + �Birs + Cirs
2 + Dirs

3�

�ln�1 +
1

Eirs + Firs
3/2 + Girs

2 + Hirs
3� . �3�

We constrain the correlation energy �Eq. �2�� to satisfy
known high- and low-density limits �Appendix B�, reducing
in this way the number of free fitting parameters from 29 to
18. The correlation energy of the 2V2DEG, as given by Eqs.
�2� and �3� with the parameters listed in Table I, represents a
central result of this work.

C. Phase diagram

In Fig. 1 we plot the energies of the paramagnetic and the
fully spin-polarized 2V2DEG. They are shown by solid lines
labeled with the number of components Nc=4 and Nc=2,
respectively. For comparison, we also plot QMC results for

other phases of the 2DEG; Nc=1 labels the fully polarized
one-valley 2DEG,17 whereas the 2D charged-boson fluid28

corresponds to the limit of an infinite-component 2DEG. The
energy of the Wigner crystal is known to be almost indepen-
dent of the number of components;13,15 we report here the
result of Ref. 15. We note that at large rs as the number of
components increases the ground-state energy appears to
quickly approach the infinite-component limit.

The dashed line for Nc=2 in Fig. 1 is the result of Ref. 17
for the paramagnetic 2DEG. Its agreement with our curve for

TABLE I. Parameters of the analytic representation �Eqs. �2�
and �3�� of the correlation energy of the 2V2DEG, determined from
Eq. �1� by a least-squares fit to the data listed in Table III. The
reduced chi square is �̃2=4.82. The table footnote marks con-
strained parameters, whereas C2 is fixed to zero since it turned out
to be irrelevant in the fitting procedure. The parameters �, �z, �,
and �z in Eq. �1� only concern the size extrapolation; their optimal
values are 0.056, 0.17, 2.03, and 0.45, respectively.

i=0 i=1 i=2

Ai −0.99870a 0.44570a 0.0082290

Bi
16
3� �10−3��a −0.85288a 0.048979

Ci 0.62208 −7.6202 0

Di 0.029726 −1.6194 −0.051302

Ei 1.6208 12.714 25.911

Fi −0.012856 0a 0a

Gi 0.66150 19.692a 15.072a

Hi 0.029765a 3.6334a 6.2343a

	 11.879

aConstrained parameters.
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FIG. 1. Energy per particle of various phases of the 2DEG at
T=0. The energy label indicates the number Nc of equivalent com-
ponents in the homogeneous fluid, the bosonic fluid �B�, or the
triangular Wigner crystal �WC�, as applicable. Results of the
present study are given by solid lines. The dashed lines are from
Ref. 17 �E1 ,E2�, Ref. 9 �E4�, Ref. 15 �EWC�, and Ref. 28 �EB�. The
inset shows E�rs ,��−E�rs ,0� from Eq. �2� �solid line� together with
the simple quadratic dependence �E�rs ,1�−E�rs ,0���2 �dotted� for
the 2V2DEG and the result for the 1V2DEG �Ref. 17� �dashed�
magnified by a factor of 10 at rs=25.
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the polarized 2V2DEG is expected but still gratifying: the
two calculations differ by details in the extrapolation to the
thermodynamic limit and the closeness of their results sup-
ports a good control of the finite-size bias. The dashed line
for Nc=4 is instead the result of Ref. 9 for the paramagnetic
2V2DEG. Its difference with the present results conveys a
physical information, namely, the quantitative effect of BF
correlations which were not included in the previous
simulations.9 Backflow improves the nodal structure of the
PW wave function, yielding in the FN approximation a
tighter upper bound to the exact ground-state energy.14 It is
known17 that BF correlations lower the FN energy more for
Nc=2 than for Nc=1. Here we find that the BF energy gain
for Nc=4 �Ref. 29� is smaller than that for Nc=2 �see Table
II of Appendix A�, albeit larger than that for Nc=1. The
modest effect of BF correlations for Nc=4 entails only mar-
ginal quantitative changes to the phase diagram of the
2V2DEG predicted in Ref. 9. The density of Wigner crystal-
lization shifts to a slightly lower value, rs	45.

Before discussing the spin-polarization dependence of the
energy and our prediction for the spin susceptibility, we
should stress that our results provide the most accurate avail-
able estimate for the correlation energy ec of the 2V2DEG,
which in turn is the key ingredient for density-functional-
theory �DFT� studies of inhomogeneous two-valley systems
in 2D within the local spin-density approximation.30 The
knowledge of ec also allows one to check the accuracy of the
ansatz made in Ref. 31 to construct the correlation energy of
a system with an arbitrary number of components, �c�Nc�, in
terms of that of the one-valley system.17 A comparison be-
tween �̃c�Nc� from Ref. 31, the present ec, and the nominally

exact QMC results for charged bosons28 �Appendix C� ex-
poses the limited accuracy of �̃c�Nc� especially at large rs,
including its prediction31 of an unphysical transition between
the nodeless ground state of the infinite-component system
and the antisymmetric ground state of the one-component
2DEG. Yet, the comparison between DFT calculations of
two-valley symmetric systems using either �̃c�Nc� or the
present ec would provide a valuable test of the adequacy of
�̃c�Nc� for DFT applications.

Our calculations confirm the absence of a transition from
the paramagnetic to the fully spin-polarized fluid in the two-
valley symmetric system.9 Moreover, in the whole density
range, where the fluid is stable, we find no evidence for the
stability of a state with partial spin polarization. As illus-
trated in Fig. 1 for rs=25, E�rs ,�� displays its minimum at
�=0 and, for all practical purposes, can be considered a con-
vex function of �.32 Convexity ensures that, by turning on an
in-plane magnetic field B, the absolute minimum displayed
by the energy goes continuously from �=0 to �=1. If the
energy exhibits a local maximum or even an inflection point
for ��1, instead, the B-driven transition to the full spin po-
larization becomes a first-order transition and is accompa-
nied by a jump in the polarization.33 This is clearly the case
for the 1V2DEG at rs=25 also shown in Fig. 1.

III. SPIN SUSCEPTIBILITY

The spin susceptibility enhancement12 of the 2V2DEG is
readily calculated using Eq. �2� as

�s/�0 = 
1 −
2rs

�
+ 2rs

2
1�rs��−1

. �4�

In Fig. 2 we compare our QMC prediction with the available
experimental results for electrons confined in Si MOSFETs.
It is evident that the 2V2DEG spin susceptibility moderately
overestimates experiments at high density but largely under-
estimates them at low density, where it does not display any
critical growth. In fact �s is a concave function of rs at all

TABLE II. Difference �=EN
BF�rs ,��−EN

PW�rs ,�� between the BF
and the PW energies �in Rydberg per particle� at selected values of
rs , � , N. In parentheses are the statistical error on the last digit.

rs

�=0 �=1

N � N �

1 52 −0.0028�1� 50 −0.0034�1�
58 −0.0035�2�
90 −0.0032�1�

2 52 −0.00166�5� 42 −0.00175�9�
50 −0.00192�9�
58 −0.00217�9�

5 52 −0.00057�2� 50 −0.00077�3�
58 −0.00088�3�

10 52 −0.00021�1� 42 −0.00025�1�
84 −0.00022�1� 50 −0.00030�2�

58 −0.00032�2�
20 52 −0.000043�6� 42 −0.000081�7�

50 −0.000085�7�
58 −0.000116�6�
90 −0.000116�6�

40 52 −0.000020�1� 50 −0.000020�1�
90 −0.000031�1�

0

1

2

3

4

5

6

7

0 4 8 12

χ s
/χ

0

rs

2V-QMC

1V-QMC
2V-RPA

1V-RPA

2V-HF

1V-HF

Si-MOSFETs

FIG. 2. Spin-susceptibility enhancement of the 1V2DEG and the
2V2DEG. The results of the present work are compared with HF
and RPA �Refs. 19 and 20� predictions as well as QMC results for
the one-valley case �Ref. 17�. Experimental results for Si MOSFETs
are also shown �Refs. 3 and 5�.
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densities where the fluid phase is stable. Indeed, a realistic
description of a 2DEG in a solid-state device requires con-
sideration of additional elements such as transverse
thickness18,19 and disorder scattering.18 As the thickness is
known to suppress the spin susceptibility and a weak disor-
der to enhance it, at present the only likely candidate to
explain the experimentally observed critical behavior of �s
�Ref. 3� appears to be a weak disorder. In Fig. 2 we also
report the QMC results of a 1V2DEG.17 It is clear that the
valley degeneracy causes a substantial suppression of the
spin susceptibility, in qualitative agreement with the effect
found in experiments on AlAs based quantum wells4 al-
though for an in-plane anisotropic mass. Moreover, �s�rs�
changes from a convex to a concave function in going from
the 1V to the 2V2DEG. We also show in Fig. 2 the predic-
tions of HF and RPA. The general trend is that, while RPA
performs somewhat better than HF, both largely overestimate
the QMC predictions and yield divergences which either
have no counterpart in QMC, for the 2V2DEG, or in the best
case take place at a density about 13 times larger than that in
QMC, for the 1V2DEG. At least RPA reverts the qualita-
tively wrong prediction of HF, which yields an enhancement
of the spin susceptibility in going from the one- to the two-
valley system.

IV. DISCUSSION AND CONCLUSIONS

We have reliably estimated the spin susceptibility of the
2V2DEG, which provides the simplest model for electrons
confined in Si MOSFETs. Our results clearly point to the
crucial qualitative role of weak disorder scattering in deter-
mining the critical growth found in the measured susceptibil-
ity at low density3 and to a likely minor quantitative role of
transverse thickness in suppressing the susceptibility at high
density. 2D electron systems in high mobility Si MOSFETs
at times have been termed clean, meaning in fact without
admixture of local moments,3 but also implicitly implying
that observed properties would be disorder independent and
would correspond to those of an ideally clean electron gas.
This latter viewpoint, fostered by the recent experimental
observation that the effective-mass enhancements of
samples34,35 with peak mobilities differing by about one or-
der of magnitude appear to be the same within error bars �of
about 10%�, is contradicted by our findings. We should stress
indeed that the samples of Refs. 34 and 35 are different on a
number of counts and not only for the amount of disorder.
Electrons in �111� Si MOSFETs �Ref. 34� have �i� a sizeable
band mass anisotropy mx /my =0.28, i.e., comparable with the
one in AlAs quantum wells36 and �ii� a transverse thickness
parameter ��3�b / �rsaB� �see, e.g., Ref. 18 for the definition�
which is more than twice the one in �100� Si MOSFETs.35

Both effects �mass anisotropy and thickness� are known to
suppress spin susceptibility in an appreciable manner.18,36

Moreover, comparing the absolute peak mobilities of Ref. 34
on the one hand and of Ref. 35 on the other, i.e., of systems
with quantitatively different length and energy scales �due to
different band masses�, is not appropriate. If l and aB are,
respectively, the mean-free path and the effective Bohr radius
in a given system, we find that the peak of l / �rsaB� for the

EG of Ref. 34 is only three times smaller than that of the EG
of Ref. 35. Hence the experiment in Ref. 34 in our opinion is
not at all conclusive in ruling out an effect of disorder on the
effective mass, let alone on the spin susceptibility of these
systems.

We have also obtained: an assessment of the backflow
effects on the energy of the two-valley paramagnetic phase,
which remains stable with respect to any partially or fully
polarized phase, up to the Wigner crystallization; an analyti-
cal fit of the QMC correlation energy, which also interpolates
between exact high- and low-density limits and provides a
local spin density functional for DFT studies of two-valley
systems; the clear indication that an accurate account of cor-
relation beyond RPA is crucial when considering the proper-
ties of both 1V2DEG and 2V2DEG.

APPENDIX A: DETAILS OF THE DMC SIMULATIONS

The trial function was chosen of the usual Slater-Jastrow
form, 
�R�=D�R�J�R�, where R��r1 , . . . ,rN� represents the
coordinates of the N electrons. The Jastrow factor is a pair
product, J�R�=exp�−�i�ju�rij��, with u�r� as the parameter-
free RPA pseudopotential.15 The phase structure is fixed by
the complex factor D=
�D�, i.e., a product of Slater deter-
minants, one for each spin-valley component.

Most of the simulations were carried out with the standard
PW choice for the one-particle orbitals, D�

PW

=det�exp�iki ·r j��. For �=0 and �=1 we also included BF
correlations,14 D�

BF=det�exp�iki ·x j��, where xi=ri
+� j�i

N ��rij��ri−r j� and the BF function ��r� �of the form
suggested in Ref. 14� was optimized by minimization of the
variational energy.

We simulated the imaginary-time evolution of the system
by a branching random walk using a short-time approxima-
tion of the importance-sampled Green’s function and exert-
ing control on the number of walkers. Calculations were per-
formed at rs=1,2 ,5 ,10,20,40. For �=0 and �=1 we chose
several values of the number of electrons between N=36 and
N=116, whereas 11 intermediate values of the polarization,
defined by flipping one spin at a time, were studied for N
=52. The twist average, for the PW simulations, was per-
formed on a mesh defined by qx�i�=��i−1 /2� , qy�j�=��j
−1 /2� , 1� i�8, i� j�8, �=� /8L, with L the side of
the simulation box. Long-range interactions were dealt with
the optimized-splitting method of Ref. 37.

Extrapolation to zero time step � and infinite number of
walkers NW was also carried out at fixed density, on the
assumption that the � and NW dependences are approximately
independent. Results at polarizations �=0, �	0.5, and �=1,
and for a bunch of � �NW� values were used to establish the
� �NW� dependence of the energy as function of �; these
dependences, combined together, were then used to extrapo-
late to NW=�, �=0 the energies calculated for all values of �.

We record the difference between BF and PW energies at
zero and full polarizations in Table II, and the whole set of
energies extrapolated to NW=�, �=0, and including the
backflow correction in Table III.
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TABLE III. Data used for the fit described in the paper. Twist-averaged DMC energy in Rydberg per particle EN�rs ,��, calculated at finite
N, extrapolated to zero time step and infinite number of walkers, and including BF correlations; in parentheses the statistical error on the last
two figures are shown. The backflow correction was calculated using the largest N entries of Table II �for given density and polarization�.

rs N � EN�rs ,�� rs N � EN�rs ,�� rs N � EN�rs ,��

1 36 0 −0.76940�15� 5 36 0 −0.308540�26� 20 36 0 −0.0930324�80�
36 1 −0.42501�21� 36 1 −0.299849�46� 36 1 −0.092705�13�
52 0 −0.76418�14� 52 0 −0.308001�25� 42 1 −0.092681�13�
52 1/13 −0.76192�14� 52 1/13 −0.307933�26� 52 0 −0.0929597�79�
52 2/13 −0.75430�15� 52 2/13 −0.307727�26� 52 1/13 −0.0929559�80�
52 3/13 −0.74537�15� 52 3/13 −0.307614�27� 52 2/13 −0.0929483�81�
52 4/13 −0.73040�15� 52 4/13 −0.307191�28� 52 3/13 −0.0929498�83�
52 5/13 −0.71189�16� 52 5/13 −0.306660�29� 52 4/13 −0.0929340�85�
52 6/13 −0.68872�16� 52 6/13 −0.305994�31� 52 5/13 −0.0929046�87�
52 7/13 −0.66258�17� 52 7/13 −0.305416�33� 52 6/13 −0.0928788�91�
52 8/13 −0.63301�17� 52 8/13 −0.304745�35� 52 7/13 −0.0928636�96�
52 9/13 −0.59922�18� 52 9/13 −0.303896�37� 52 8/13 −0.092842�10�
52 10/13 −0.55908�19� 52 10/13 −0.302872�39� 52 9/13 −0.092816�11�
52 11/13 −0.51827�19� 52 11/13 −0.301915�42� 52 10/13 −0.092765�11�
52 1 −0.42381�21� 52 1 −0.299624�46� 52 11/13 −0.092735�12�
84 0 −0.76258�14� 84 0 −0.307778�25� 52 1 −0.092659�13�
84 1 −0.42201�21� 84 1 −0.299197�45� 84 0 −0.0929138�79�

84 1 −0.092577�13�
100 1 −0.092562�13�

2 26 3/13 −0.587078�70� 10 26 3/13 −0.172824�16� 116 1 −0.092552�13�
36 0 −0.590629�64� 36 0 −0.172782�15�
36 1 −0.51883�12� 36 1 −0.171014�29�
52 0 −0.588677�63� 42 1 −0.171000�29� 40 36 0 −0.0489598�23�
52 1/13 −0.588144�63� 50 1 −0.170903�29� 36 1 −0.0488830�31�
52 2/13 −0.586577�65� 52 0 −0.172599�15� 52 0 −0.0489302�23�
52 3/13 −0.584820�67� 52 1/13 −0.172555�15� 52 1/13 −0.0489325�23�
52 4/13 −0.581489�70� 52 2/13 −0.172524�15� 52 2/13 −0.0489275�23�
52 5/13 −0.577593�76� 52 3/13 −0.172522�16� 52 3/13 −0.0489312�24�
52 6/13 −0.572603�79� 52 4/13 −0.172425�17� 52 4/13 −0.0489244�24�
52 7/13 −0.567330�85� 52 5/13 −0.172309�18� 52 5/13 −0.0489179�24�
52 8/13 −0.561367�91� 52 6/13 −0.172163�19� 52 6/13 −0.0489100�25�
52 9/13 −0.554274�96� 52 7/13 −0.172056�20� 52 7/13 −0.0489053�26�
52 10/13 −0.54584�10� 52 8/13 −0.171941�21� 52 8/13 −0.0489042�27�
52 11/13 −0.53737�11� 52 9/13 −0.171760�23� 52 9/13 −0.0488968�27�
52 1 −0.51815�12� 52 10/13 −0.171525�24� 52 10/13 −0.0488833�28�
78 3/13 −0.583684�65� 52 11/13 −0.171362�26� 52 11/13 −0.0488779�29�
78 7/13 −0.566625�84� 52 1 −0.170929�29� 52 1 −0.0488635�31�
84 0 −0.587940�61� 78 3/13 −0.172383�16� 78 7/13 −0.0488920�26�
84 1 −0.51703�12� 78 7/13 −0.171970�20� 84 0 −0.0489127�23�

104 7/13 −0.566206�83� 84 0 −0.172490�15� 84 1 −0.0488322�31�
84 1 −0.170718�29� 104 7/13 −0.0488743�26�
90 1 −0.170765�29�

104 7/13 −0.171901�20�
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APPENDIX B: HIGH- AND LOW-DENSITY LIMIT OF THE
CORRELATION ENERGY OF THE FOUR

COMPONENT 2DEG

We directly refer to Ref. 17 for both the rs→� limit,
whose leading terms in rs

−1 and rs
−3/2 are independent of the

number of components,38 and the rs→0 limit at �=1, which
is the same two-component system as the one-valley case at
�=0.17

Here we only need to specify the high-density limit for
the four-component system, limrs→0 ec�rs ,0�=A0+B0rs ln rs.
Generalizing the procedure of Ref. 39 to the multivalley
case, we write ec as the sum of the second-order exchange
energy e2

�b� and the ring contribution ec
�r�, whose lowest order

e2
�r� is the direct term of the second-order energy per particle.

It turns out that e2
�b� is a constant, independent of rs and the

number of components of the system, Nc, while e2
�r�

=e2
�r��Nc� depends only on Nc. Furthermore, we notice that

the ring contribution scales with Nc as ec
�r��rs ,Nc�

=Ncf�rsNc
3/2�, so that the following scaling law holds:

ec
�r��rs,4� = 2ec

�r��4�2rs,2� . �B1�

By applying the scaling law �Eq. �B1�� to the leading terms
of ec, we find A0=e2

�b�+2e2
�r��2�=−0.99870 and B0=16�10

−3�� / �3��.

APPENDIX C: CHECK OF AN APPROXIMATE
MULTICOMPONENT CORRELATION ENERGY

In Fig. 3 we show a comparison between the multicom-
ponent correlation energy �̃c�Nc� of Ref. 31 and various
simulation results, including the present two-valley calcula-
tion, and the nominally exact QMC results for charged
bosons.28 Total energies are displayed. The scale of the figure
emphasizes the limited accuracy of �̃c�Nc� in the large rs
regime.
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